Isothermal Section of the Co-Gd-Sn Ternary System Between 0 and 55 at.% Sn at 500 °C

J.L. Yan, Y. Xu, Q.X. Long, J.M. Zhu, and Y.H. Zhuang

(Submitted April 10, 2009; in revised form July 5, 2009)

The isothermal section of the Co-Gd-Sn system between 0 and 55 at.% Sn at 500 °C was investigated by means of powder x-ray diffraction. Five ternary phases were identified or confirmed: Gd_6Co_2Sn , $Gd_3Co_8Sn_4$, $Gd_3Co_6Sn_5$, Gd_4CoSn_8 , and $Gd_3Co_4Sn_{13}$. A new ternary phase $Gd_{117}Co_{57}Sn_{112}$ with $Dy_{117}Co_{57}Sn_{112}$ -type structure, space group Fm3m, and lattice parameter a = 3.0023 (4) nm was found. The ternary rare earth compound $Gd_3Co_8Sn_4$ presents a homogeneity range of 20 to 27 at.% Sn along the 20 at.% Gd iso-concentration line. Comparison of this section with those of the Co-Gd-Sn system reported in the literature was made and the differences were discussed.

Keywords	intermetallic compound, isothermal	section,	ternary
	system, x-ray analysis		

1. Introduction

Since the discovery of the giant magnetocaloric effect (MCE) in Gd₅Si_xGe_{4-x} compounds in 1997,^[1] a number of rare-earth-based (especially Gd-based) intermetallic compounds, such as RECo₂ and RE₅M₄ (where RE = a rare-earth element and M = Si, Ge, or Sn), have been widely studied for their structure and MCE properties in search of high-performance room temperature magnetic refrigerant materials.^[2] Some efforts were made in the substitution of a third element M (M = Al, Si, Ga, Ge, Sn) for Co in the RECo₂ compound.^[3,4] Our previous work showed that the solid solubility of Sn in RECo₂ is very limited (<2 at.% Sn).^[4] In addition, the isothermal sections of the RE-Co-Sn ternary systems found in the literature for RE = Nd,^[5] Gd,^[6] Dy,^[7] and Er^[8] have shown the existence of rich ternary rare earth stannides with interesting magnetic properties.^[9-11] Among these systems, the Co-Gd-Sn system has attracted much attention. Seven ternary compounds Gd₆Co₂Sn,

GdCo₃Sn, Gd₄Co₃Sn₃, GdCoSn, GdCo₂Sn₂, GdCo₆Sn₆, and Gd₃Co₄Sn₁₃ have been reported by Skorlozdra et al.^[6] in the Co-Gd-Sn system, as listed in Table 1. Interestingly, four of these ternary phases have a Co:Sn ratio of 1:1. In this work, we re-investigated the partial phase equilibrium in the Co-Gd-Sn ternary system at 500 °C (up to 55 at.% Sn), with emphasis placed on the regions along the line between Gd₄Co₃Sn₃ and CoSn.

The phase diagrams of the binary Co-Gd,^[17-19] Co-Sn,^[17,20,21] and Gd-Sn^[17,22,23] systems have been well assessed. Buschow^[24] first reported eight compounds, namely Gd₂Co₁₇, GdCo₅, Gd₂Co₇, GdCo₃, GdCo₂, Gd₄Co₃, Gd₁₂Co₇, and Gd₃Co, in the Co-Gd binary system, later Ge et al.^[25] confirmed the existence of the above compounds except for Gd₁₂Co₇, and mentioned that GdCo₅ phase decomposes into Gd₂Co₁₇ and Gd₂Co₇ at 850 °C. Gd₂Co₁₇ and Gd₂Co₇ are dimorphic, but their transformation temperatures are unknown. In the Co-Sn system,^[21] there are three compounds at 500 °C: Co₃Sn₂, CoSn, and CoSn₂. Polymorphic transformation of Co₃Sn₂ occurs at about 560 °C. On the Gd-rich side (50 to 100 at.% Gd) of the assessed Gd-Sn phase diagram,^[17,22,23] five compounds, namely Gd₃Sn, Gd₅Sn₃, Gd₅Sn₄, Gd₈Sn₇, and Gd₁₁Sn₁₀, were reported. The structures of phases Gd₃Sn and Gd₈Sn₇ are unknown. The crystal structure data for the binary phases relevant to this study are listed in Table 2.

2. Experimental

The sample buttons, each weighing 3 g, were prepared by arc melting of Gd (99.9 wt.%), Co (99.9 wt.%), and Sn (99.99 wt.%) on a water-cooled copper hearth with a nonconsumable tungsten electrode under pure argon atmosphere. Each button was turned over and re-melted three times for improved homogeneity. For most alloys, the weight losses were found to be less than 1% after melting. Subsequently, the samples were sealed in an evacuated quartz tube, annealed at elevated temperature for 30 days,

This article is an invited paper selected from participants of the 14th National Conference and Multilateral Symposium on Phase Diagrams and Materials Design in honor of Prof. Zhanpeng Jin's 70th birthday, held November 3-5, 2008, in Changsha, China. The conference was organized by the Phase Diagrams Committee of the Chinese Physical Society with Drs. Huashan Liu and Libin Liu as the key organizers. Publication in *Journal of Phase Equilibria and Diffusion* was organized by J.-C. Zhao, The Ohio State University; Yong Du, Central South University; and Qing Chen, Thermo-Calc Software AB.

J.L. Yan, Y. Xu, Q.X. Long, J.M. Zhu, and Y.H. Zhuang, Institute of Materials Science and Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004, People's Republic of China. Contact e-mails: zhuang@gxu.edu.cn and yjl@gxu.edu.cn.

				Lattice parameter	rs, nm	
Phase	Space group	Structure type	a	b	с	Ref.
Gd ₆ Co ₂ Sn	Immm	Ho ₆ Co ₂ Ga	0.9522	0.9502	0.9995	[6]
			0.9530(2)	1.0012(2)	0.9505(2)	This work
GdCo ₃ Sn	$P6_3/mmc$	BaLi ₄	0.8893		0.7506	[12,13]
Gd ₃ Co ₈ Sn ₄	$P6_3mc$	Lu ₃ Co _{7,77} Sn ₄	0.8907		0.7502	[14]
			0.8910(1)		0.7511(1)	This work
$Gd_4Co_3Sn_3$	Unknown					[0]
GdCoSn	Pnma	TiNiSi	0.7319	0.4671	0.7464	[6]
GdCo ₂ Sn ₂	Unknown					[6]
GdCo ₆ Sn ₆	P6/mmm	YCo ₆ Ge ₆	0.5352		0.4279	[6]
Gd ₃ Co ₆ Sn ₅	Immm	La_3Al_{11}	0.4314	1.2422	0.9742	[15]
			0.4310(1)	1.2416(2)	0.9735(1)	This work
Gd ₁₁₇ Co ₅₇ Sn ₁₁₂	Fm3m	Dy ₁₁₇ Co ₅₇ Sn ₁₁₂	3.0023(4)			This work
Gd ₄ CoSn ₈	Cmcm	CeNiSi ₂	0.4449	1.657	0.4400	[16]
			0.4451(1)	1.6601(2)	0.4399(1)	This work
Gd ₃ Co ₄ Sn ₁₃	$Pm\overline{3}n$	Pr ₃ Rh ₄ Sn ₁₃	0.9518			[16]
			0.9498(1)			This work

Table 1 Crystallographic data for the ternary compounds in the Co-Gd-Sn system

Table 2 Crystallographic data for the binary compounds relevant to the studied isothermal section of the Co-Gd-Sn system^[16]

			Lattice parameters, nm				
Phase	Space group	Structure type	a	b	с	β, °	
Gd ₂ Co ₁₇	R3m	Th_2Zn_{17}	0.8377		1.2198		
Gd ₂ Co ₁₇	$P6_3/mmc$	Th ₂ Ni ₁₇	0.8378		0.8139		
GdCo5	P6/mmm	CaCu ₅	0.4974		0.3973		
Gd ₂ Co ₇	R3m	Er ₂ Co ₇	0.5024		3.632		
Gd ₂ Co ₇	$P6_3/mmc$	Ce ₂ Ni ₇	0.5022		2.419		
GdCo ₃	R3m	NbBe ₃	0.5026		2.4456		
GdCo ₂	$FdR\bar{3}m$	Cu ₂ Mg	0.7262				
Gd ₄ Co ₃	$P6_3/m$	Ho ₄ Co ₃	1.159		0.4055		
Gd ₁₂ Co ₇	$P2_1/c$	Ho ₁₂ Co ₇	0.841	1.139	1.402	138.8	
Gd ₃ Co	Pnma	Fe ₃ C	0.705	0.954	0.632		
α -Co ₃ Sn ₂	Pnma	Ni ₃ Sn ₂	0.7085	0.5216	0.8194		
CoSn	P6/mmm	CoSn	0.5268		0.4249		
CoSn ₂	I4/mcm	CuAl ₂	0.6363		0.5456		
Gd ₃ Sn	Unknown						
Gd_5Sn_3	$P6_3/mcm$	Mn ₅ Si ₃	0.9020		0.6568		
Gd_5Sn_4	Pnma	Sm5Ge4	0.8046	1.553	0.8102		
Gd_8Sn_7	Unknown						
$Gd_{11}Sn_{10} \\$	I4/mmm	$Ho_{11}Ge_{10}$	1.167		1.715		

and then cooled down slowly to 500 °C and kept for 14 days before quenching in liquid nitrogen. X-ray powder diffraction (XRD) data were collected on a Rigaku D/Max 2500 V diffractometer with Cu K α and a graphite monochromator. The experimental XRD patterns were analyzed using JADE5 software^[26] by comparing them with the powder diffraction files (PDF release2002) and the calculated ones obtained by using the PowderCell program.^[27]

3. Results and Discussion

Eight compounds in the Co-Gd binary system were confirmed to exist. Gd_2Co_{17} and Gd_2Co_7 were found to crystallize at 500 °C with the Th_2Zn_{17} and Er_2Co_7 structure types, respectively. Evidence for the existence of $Gd_{12}Co_7$ was given by the ternary alloy samples in the three-phase

region of Gd_6Co_2Sn , $Gd_{12}Co_7$, and Gd_3Co . $GdCo_5$ was found to be a metastable phase at 500 °C; its eutectoid decomposition to Gd_2Co_{17} and Gd_2Co_7 is incomplete. This was also the case in our previous studies of the Gd-Dy- $Co^{[28]}$ and Gd-Tb-Co^[29] ternary systems. The GdCo₅ metastable phase is thus not presented in this isothermal section.

In the composition range of our investigation (up to 55 at.% Sn), the existence of the binary phases Co_3Sn_2 and CoSn in the Co-Sn system as well as Gd₅Sn₃, Gd₅Sn₄, and Gd₁₁Sn₁₀ in the Gd-Sn system were confirmed. No Gd₃Sn phase was observed. In the XRD pattern of an alloy with Gd₃Sn nominal composition, only of two phases, Gd and Gd₅Sn₃ were evident. In the Gd-Sn system, Gd₅Sn₃ is a stable phase while the binary alloy samples containing 40 to 55 at.% Sn were rapidly pulverized in air. The Gd₅Sn₄ and $Gd_{11}Sn_{10}$ phases could only be identified by comparing XRD patterns of some binary and ternary alloys in the region close to their stoichiometric composition with their theoretical powder patterns. The existence of Gd₈Sn₇ remains unknown because of its unknown structure and the difficulty of obtaining a sound XRD pattern due to the high chemical reactivity of the relevant alloys. This pulverization phenomenon for binary alloys containing more than 40 at.% Sn is commonly found in the rare earth-Sn systems, as mentioned in the studies of phase equilibria in the Nd-Co-Sn system,^[5] Pr-Fe-Sn system,^[30] Gd-Fe-Sn system,^[31] and Dy-Ag-Sn system,^[32] etc.

It is suggested that these samples are subjected to rapid hydrolysis and oxidization in atmospheric conditions.

Phase relations in the ternary system Co-Gd-Sn at 497 °C (0 to 55 at.% Sn) and at 397 °C (>55 at.% Sn) were previously investigated by Skorlozdra et al.^[6] They reported the existence of seven ternary compounds and gave the structures of Gd₆Co₂Sn, GdCoSn, and GdCo₆Sn₆. Our literature study showed that in addition to the above seven compounds, three ternary stannides Gd₃Co₈Sn₄,^[14] Gd₃Co₆Sn₅,^[15] and Gd₄CoSn₈^[16] have also been reported. Their theoretical diffraction intensities were calculated in this study for phase identification.

By extensive x-ray analysis of 120 alloys, the partial isothermal section of the ternary Co-Gd-Sn system at 500 °C was determined, as shown in Fig. 1. (The alloys prepared and their XRD analysis results are indicated in Fig. 1 with symbols.) The results of phase identification and the lattice parameters of each phase from XRD measurements are listed in Table 3 for selected alloys. The existence of compounds Gd_6Co_2Sn , $Gd_3Co_8Sn_4$, $Gd_3Co_6Sn_5$, Gd_4CoSn_8 , and $Gd_3Co_4Sn_{13}$ were confirmed and one new compound $Gd_{117}Co_{57}Sn_{112}$ was found. The lattice parameters determined in this work for all these six ternary compounds are also listed in Table 1.

Skorlozdra et al.^[6] reported that the GdCo₃Sn compound has a small homogeneity range of 20 to 25 at.% Sn. We prepared six alloy samples along the iso-concentration line of 20 at.% Gd with the concentration of Sn varying from

Fig. 1 Partial isothermal section of the Co-Gd-Sn ternary system at 500 $^{\circ}$ C (0 to 55 at.% Sn). The alloys prepared and their XRD analysis results are shown with symbols. Results of phase identification and lattice parameters from XRD analysis are reported in Table 3 for the numbered alloy samples

Table 2	Quantitativa analy	sis for colocted	allove in the	Co Cd Sn system	at 500 °C
Table 3	Quantitative analy	sis for selected	alloys in the	Co-Ga-Sn system	at 500 °C

	Alloy	composition	, at.%			L	Lattice parameters, nm		
No.	Gd	Sn	Co	Phases	Space group	а	b	с	
1	86	8	6	Gd ₆ Co ₂ Sn	Immm	0.9519(3)	0.9997(1)	0.9492(2)	
				Gd ₅ Sn ₃	$P6_3/mcm$	0.9002(2)		0.6554(2)	
				Gd	$P6_3/mmc$	0.3638(5)		0.5784(3)	
2	67	15	18	Gd ₆ Co ₂ Sn	Immm	0.9530(2)	1.0012(2)	0.9505(2)	
				Gd ₅ Sn ₃	$P6_3/mcm$	0.9027(3)		0.6573(1)	
3	44	2	54	GdCo ₂	$Fd\overline{3}m$	0.7263(1)			
				Gd ₆ Co ₂ Sn	Immm	0.9517(6)	0.9984(2)	0.9502(2)	
				Gd ₄ Co ₃	$P6_3/m$	1.1586(5)		0.4060(2)	
4	57	20	23	Gd ₅ Sn ₃	$P6_3/mcm$	0.9023(3)		0.6575(2)	
				Gd ₆ Co ₂ Sn	Immm	0.9512(3)	1.0004(3)	0.9532(2)	
				GdCo ₂	$Fd\bar{3}m$	0.7276(2)			
5	38	10	53	Gd ₅ Sn ₃	$P6_3/mcm$	0.9024(2)		0.6577(3)	
				GdCo ₂	$Fd\overline{3}m$	0.7276(2)			
				GdCo ₃	R3m	0.5053(3)		2.459(1)	
6	42	18	40	Gd ₅ Sn ₃	$P6_3/mcm$	0.8973(3)		0.6529(2)	
				Gd ₂ Co ₇	$R\overline{3}m$	0.5018(3)		3.624(1)	
				GdCo ₃	R3m	0.5023(4)		2.442(2)	
7	33	17	50	Gd ₁₁₇ Co ₅₇ Sn ₁₁₂	Fm3m	3.0019(6)		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
				Gd ₅ Sn ₃	$P6_3/mcm$	0.8993(7)		0.6543(4)	
				Gd ₂ Co ₇	R3m	0.5034(3)		3.631(2)	
8	45	28	28	Gd117C057Sn112	Fm3m	3.0051(5)		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
				Gd ₅ Sn ₃	$P6_3/mcm$	0.8988(2)		0.6558(2)	
				Gd ₂ Co ₇	R3m	0.5024(3)		3.628(2)	
9(a)	40	30	30	Gd117C057Sn112	$Fm\overline{3}m$	3.0085(2)			
				Gd_5Sn_2 (trace)	$P6_3/mcm$				
				Gd ₂ Co ₇ (trace)	$R\overline{3}m$				
10	44	40	16	Gd117C057Sn112	$Fm\bar{3}m$	3 0023(4)			
11	25	20	55	Gd117C057Sn112	$Fm\bar{3}m$	3.0112(4)			
	20	20	00	Gd2C017	$R\overline{3}m$	0.8397(3)		1 2225(4)	
				$Gd_2Co_8Sn_4$ (trace)	10.00	0.00077(0)		112220(1)	
12	20	20	60	Gd2Co ₂ Sn ₄ (uuce)	P6,mc	0.8903(3)		0.7415(3)	
12	20	20	00	Gd ₂ Co ₁₇ (trace)	1 03/110	0.0905(5)		0.7115(5)	
13(a)	20	23	57	Gd_2Co_1 (late)	P6.mc	0.8906(2)		0.7477(2)	
13(u) 14	20	25	55	$Gd_3Co_8Sn_4$	P6 ₂ mc	0.8900(2) 0.8891(2)		0.7474(2)	
15	20	25	53	Gd ₃ Co ₈ Sn ₄	P6_mc	0.8091(2)		0.7474(2) 0.7511(1)	
15 16(a)	20	33	33	Gdu-Co-Snu	Fm3m	3.0092(2)		0.7511(1)	
10(a)	55	55	55	Gd_Co_Sn	P6.mc	0.8914(4)		0.7490(4)	
17	30	35	35	GdCoSn	Fm3m	3.0142(2)		0.7470(4)	
17	50	35	35	$Gd_{117}C0_{57}Sn_{112}$	P6 ma	0.8942(4)		0 7468(5)	
				$Gd_3Co_8Sn_4$	I 03mc	0.0942(4)	1 2448(4)	0.7408(3)	
19	22	17	20	Gd Co Sn		0.4319(2)	1.2440(4)	0.9737(4)	
10	33	4/	20	$Gd_{117}C0_{57}Sn_{112}$	r mom Cmom	0.445(5)	1 6604(1)	0.440(6)	
				Gd Co Sn	Limmin	0.443(3)	1.0004(1) 1.2440(5)	0.440(0)	
10(-)	20	40	40	$Gd_3Co_6Sn_5$	Immm	0.4319(2)	1.2449(3)	0.9749(0)	
19(a)	20	40	40	$Gd_3Co_6Sn_5$	Immm	0.4310(1)	1.2410(2)	0.9735(1)	
				$Gu_4 Cosn_8$	Cmcm Dum: 7	0.4444(3)	1.0391(8)	0.4390(2)	
20	12	41	AC	$C_{3}SH_{2}$	rnma	0.7072(3)	0.3202(2)	0.0752(2)	
20	15	41	40	$Ga_3Co_6Sn_5$	Immm	0.4311(1)	1.2424(3)	0.9752(3)	
				Ga4CoSn ₈	Cmcm	0.4448(2)	1.6583(6)	0.4403(1)	
21	22	40	20	Co_3Sn_2	Pnma	0.7094(1)	0.52170(8)	0.8206(2)	
21	22	48	30	$Gd_3Co_6Sn_5$	Immm	0.4311(1)	1.2418(2)	0.9742(2)	
				Gd_4CoSn_8	Стст	0.4446(1)	1.65/0(4)	0.4395(1)	
				Co_3Sn_2 (trace)	Pnma				

Table 3 Continued

	Alloy composition, at.%					Lattice parameters, nm		
No.	Gd	Sn	Со	Phases	Space group	a	b	с
22	8	46	46	Gd ₄ CoSn ₈	Cmcm	0.4451(1)	1.6625(4)	0.4407(1)
				Co ₃ Sn ₂	Pnma	0.7102(2)	0.5215(2)	0.8196(2)
				Gd ₃ Co ₆ Sn ₅	Immm	0.4322(2)	1.2450(4)	0.9769(3)
23	8	46	46	Gd ₄ CoSn ₈	Cmcm	0.4451(1)	1.6601(2)	0.4399(1)
				Co ₃ Sn ₂	Pnma	0.7098(1)	0.5219(1)	0.8208(1)
				CoSn (trace)				
24	4	46	50	Co ₃ Sn ₂	Pnma	0.7074(3)	0.5211(2)	0.8198(4)
				CoSn	P6/mmm	0.5318(2)		0.4281(2)
				Gd ₄ CoSn ₈	Cmcm	0.4450(2)	1.6592(9)	0.4397(2)
25	14	54	32	Gd ₄ CoSn ₈	Cmcm	0.4440(4)	1.653(1)	0.4389(3)
				Gd ₃ Co ₄ Sn ₁₃	$Pm\bar{3}n$	0.9498(1)		
				CoSn	P6/mmm	0.5347(5)		0.4294(6)

(a) Two alloy samples had been prepared at this composition. Results listed in this table had been confirmed by repetitive experiments

20 to 30 at.%. Analysis of the diffraction patterns of these alloys indicated the existence of a phase with a homogeneity range of 20 to 27 at.% Sn. Our results indicated that this phase is better described by the $Gd_3Co_8Sn_4$ structure rather than the GdCo₃Sn structure.

A comparison of our work on the Co-Gd-Sn system (Fig. 1) with those given by Skorlozdra et al.^[6] (figure not shown) shows that in the composition range of Gd-Gd₂Co₇-Gd₅Sn₃, our results were in good agreement with theirs. Significant differences were found in the phase regions along the line between the reported compounds Gd₄Co₃Sn₃ and CoSn. In our investigation of the Co-Gd-Sn system, alloys were prepared densely around this line. Although isostructural compounds of the RECoSn with a TiNiSi type structure (space group *Pnma*) and of the RECo₆Sn₆ with a YCo₆Ge₆type structure (space group P6/mmm) have been reported for heavy rare earths RE = Tb, Dy, Ho, Er, and Y^[16] and for RE = Gd systems in Ref 6 and 33, no such phases corresponding to the structures of GdCoSn and GdCo₆Sn₆ were observed under our experimental conditions. Instead, analyses of the XRD patterns of alloys around the composition points of the reported GdCoSn and Gd₄Co₃Sn₃ compounds revealed the existence of a new phase with an approximate atomic ratio close to 2:1:2. The diffraction pattern of the new phase exhibited characteristic profile similar to the XRD pattern of compound Dy₁₁₇Co₅₇Sn₁₁₂ which was found during our investigation of the Dy-Co-Sn system.^[7] Based on the refinement of single crystal x-ray diffraction data, Dy₁₁₇Co₅₇Sn₁₁₂ was reported to crystallize in a large fcc cell (space group $Fm\bar{3}m$, a = 2.9831(4) nm) with a structure type similar to the $Tb_{117}Fe_{52}Ge_{112}$ type.^[34] In this work, the stoichiometry of Gd₁₁₇Co₅₇Sn₁₁₂ was assumed for this new phase in analogy with Dy₁₁₇Co₅₇Sn₁₁₂. Our preliminary structure study of this new phase Gd₁₁₇Co₅₇Sn₁₁₂ from powder XRD data vielded the lattice parameter a = 3.0023(4) nm, as given in Table 1. Theoretical diffraction intensities of Gd₁₁₇Co₅₇Sn₁₁₂ phase were then calculated to compare with the experimental ones and a

good agreement was found. Figure 2 presents the XRD pattern of alloy Gd33Co50Sn17 (alloy #7), indicating that this alloy consists of three phases: $Gd_{117}Co_{57}Sn_{112}$, Gd_2Co_7 , and Gd_5Sn_3 . The XRD pattern of alloy with $Gd_4Co_3Sn_3$ nominal composition is similar to that of alloy #7 and is in no way a single-phase pattern. Figure 3 shows the XRD pattern of the GdCoSn stoichiometric alloy (alloy #16). It is clearly seen that this alloy consists of the $Gd_{117}Co_{57}Sn_{112}$ and $Gd_3Co_8Sn_4$ phases.

Compound GdCo₂Sn₂ has been reported by Skorlozdra et al.^[6] However, in the RE-Co-Sn systems for RE = Nd,^[5] Dy,^[7] and Er,^[8] no such compound with a stoichiometry of 1:2:2 was observed, instead compounds with a stoichiometry of 3:6:5 were reported. Extensive studies have indicated that in the RET_2X_2 series (1:2:2), compounds RET_2X_2 with T = Fe, Co, Ni, Cu and X = Si, Ge belong to the bodycentered tetragonal ThCr2Si2-type structure (space group I4/ *mmm*), whereas compounds RET_2X_2 with T = Ni, Cu and X = Sn, Sb crystallize in the primitive tetragonal CaBe₂Ge₂-type structure (space group *P4/nmm*).^[16] Compounds RE₃Co₆Sn₅ crystallize with a ternary ordered derivative of the orthorhombic La₃Al₁₁-type structure (space group Immm).^[15,35] Theoretical diffraction intensities for tentative GdCo₂Sn₂ or Gd₃Co₆Sn₅ were calculated based on the above-mentioned three types of structure, and were compared with the observed diffraction patterns of relevant alloys. It has been found that no 1:2:2 compound with either the ThCr₂Si₂-type structure or the CaBe₂Ge₂-type structure exists in the Co-Gd-Sn system. The calculated diffraction intensities based on the structure of Gd₃Co₆Sn₅ from Ref 15 matched well with the observed diffraction patterns. Therefore, the existence of a compound with a stoichiometry of 3:6:5 is confirmed. Figure 4 shows the XRD pattern of the GdCo₂Sn₂ stoichiometric alloy (alloy #19). Three phases Gd₃Co₆Sn₅, Gd₄CoSn₈, and Co₃Sn₂ were identified. Analysis of XRD patterns of alloys #20-23 (see Table 3) can further clarify the nonexistence of the GdCo₆Sn₆ and GdCo₂Sn₂ compounds in the Co-Gd-Sn system. Three

Fig. 2 XRD pattern of alloy Gd33Co50Sn17 (alloy #7): $Gd_{117}Co_{57}Sn_{112} + Gd_2Co_7 + Gd_5Sn_3$

Fig. 3 XRD pattern of the alloy with GdCoSn nominal composition (alloy #16): Gd₁₁₇Co₅₇Sn₁₁₂ + Gd₃Co₈Sn₄

Fig. 4 XRD pattern of the alloy with $GdCo_2Sn_2$ nominal composition (alloy #19): $Gd_3Co_6Sn_5 + Gd_4CoSn_8 + Co_3Sn_2 + Co_3Sn_2$

Journal of Phase Equilibria and Diffusion Vol. 30 No. 5 2009

Fig. 5 XRD pattern of alloy Gd4Co50Sn46 (alloy #24): $CoSn + Co_3Sn_2 + Gd_4CoSn_8$

phases were identified in alloys #20-22 as Gd₃Co₆Sn₅, Gd₄CoSn₈, and Co₃Sn₂. No diffraction peaks for the GdCo₆Sn₆ and GdCo₂Sn₂ structures were found. Evidence can also be found in Fig. 5 which presents the XRD pattern of alloy Gd4Co50Sn46 (alloy #24). The peaks corresponding to the Gd₄CoSn₈ phase are clearly seen, and thus this alloy can not be in the (CoSn + Co₃Sn₂ + GdCo₆Sn₆) three-phase field as shown in Ref 6. Actually, alloy #24 consists of three phases of CoSn, Co₃Sn₂, and Gd₄CoSn₈.

4. Conclusions

- Partial isothermal section between 0 and 55 at.% Sn of the Co-Gd-Sn ternary system at 500 °C has been determined by means of X-ray powder diffraction. This section shows some differences compared with those reported by Skorlozdra et al.^[6]
- (2) In the studied composition range, the existence of 12 binary compounds Gd₅Sn₃, Gd₅Sn₄, Gd₁₁Sn₁₀, Co₃Sn₂, CoSn, Gd₂Co₁₇, Gd₂Co₇, GdCo₃, GdCo₂, Gd₄Co₃, Gd₁₂Co₇, and Gd₃Co were confirmed. Gd₃Sn phase was not observed. The binary Gd-Sn alloys containing 40 to 55 at.% Sn and their adjacent ternary alloys were difficult to obtain due to their pulverization in air.
- (3) Six ternary phases were found to exist at 500 °C: Gd_6Co_2Sn , $Gd_3Co_8Sn_4$, $Gd_3Co_6Sn_5$, $Gd_{117}Co_{57}Sn_{112}$, Gd_4CoSn_8 , and $Gd_3Co_4Sn_{13}$. Ternary phase $Gd_{117}Co_{57}Sn_{112}$ was first reported in this work with $Dy_{117}Co_{57}Sn_{112}$ -type structure, space group $Fm\bar{3}m$ and lattice parameter a = 3.0023(4) nm. Ternary phases of the $Gd_4Co_3Sn_3$, GdCoSn, $GdCo_2Sn_2$, and $GdCo_6Sn_6$ compositions, which were reported by Skorlozdra et al.,^[6] were not observed in this study.
- (4) Our results indicated that the GdCo₃Sn compound belongs to the RE₃Co₈Sn₄ structure. Gd₃Co₈Sn₄ phase shows a homogeneity range of 20 to 27 at.% Sn along the 20 at.% Gd iso-concentration line.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 50861004) and Science Foundation of Education Department of Guangxi (Grant No. 200708MS022).

References

- V.K. Pecharsky and K.A. Gschneidner, Jr., Giant Magnetocaloric Effect in Gd₅(Si₂Ge₂), *Phys. Rev. Lett.*, 1997, **78**(23), p 4494-4497
- K.A. Gschneidner, V.K. Pecharsky, and A.O. Tsokol, Recent Developments in Magnetocaloric Materials, *Rep. Prog. Phys.*, 2005, 68(6), p 1479-1539
- D.H. Wang, S.L. Tang, H.D. Liu, W. Zhong, and Y.W. Du, The Study of Magnetic Entropy Change in Dy(Co_{1-X}M_X)₂ (M = Al, Si, Ga, Ge) Compounds, *Mater. Lett.*, 2003, 57(24-25), p 3884-3888
- Y.H. Zhuang, J.Q. Deng, J.Q. Li, Y.Z. Zhan, Q.M. Zhu, and K.W. Zhou, Influence of Sn Substitution for Co in RCo₂ (R = Gd, Tb, Dy) Alloys on the Structure and Magnetocaloric Effect, *Rare Met.*, 2007, 26(2), p 97-102
- V. Babyuk, O. Bodak, L. Romaka, A. Tkachuk, and Yu. Gorelenko, Isothermal Cross-Sections of the Nd-Co-Sn Ternary System at 670 K and 770 K, *J. Alloys Compd.*, 2007, 441(1-2), p 107-110
- R.V. Skolozdra, L.P. Komarovskaya, and O.E. Koretskaya, Interaction in the Gd-Me-Sn Systems where Me = Co, Ni, Cu. Akad. Nauk Ukr. SSR Inst. Problem Materialoved, 1990, p 52-62 (in Russian)
- Y.H. Zhuang, J.M. Zhu, J.L. Yan, Y. Xu, and J.Q. Li, Phase Relationships in the Dy-Co-Sn System at 773 K, *J. Alloys Compd.*, 2008, 459(1-2), p 461-465
- R.V. Skolozdra, Y.S. Mudryk, and L.P. Romaka, The Ternary Er-Co-Sn System, J. Alloys Compd., 2000, 296(1-2), p 290-292
- M.A. Pires, L. Mendonça Ferreira, J.G.S. Duque, R.R. Urbano, O. Agüero, I. Torriani, C. Rettori, E.M. Bittar, and P.G. Pagliuso, Crystal Structure and Physical Properties of Gd₃Co₄Sn₁₃ Intermetallic Antiferromagnet, *J. Appl. Phys.*, 2006, **99**, p 08J311

Section I: Basic and Applied Research

- 10. D. Kaczorowski, Y. Mudryk, P. Rogl, L. Romaka, and Y. Gorelenko, Magnetic and Electrical Properties of the Stannides $RE_3Co_6Sn_5$ (RE = Sm, Gd, Tb and Dy), *J. Phys. Condens. Mater.*, 2003, **15**(17), p 2515-2522
- A. Gil, B. Penc, E. Wawrzynska, J. Hernandez-Velasco, A. Szytula, and A. Zygmunt, Magnetic Properties and Magnetic Structures of RCo_xSn₂ (R = Gd-Er) Compounds, J. Alloys Compd., 2004, 365(1-2), p 31-34
- W. Pendl, J.A.H. Coaquira, H.R. Rechenberg, and R.V. Skolozdra, Magnetic Properties and Hyperfine Field at Sn Site in GdCo₃Sn, *J. Magn. Magn. Mater.*, 2001, 226-230(3), p 1142-1144
- W. Pendl, J.A.H. Coaquira, H.R. Rechenberg, and R.V. Skolozdra, Mössbauer Investigation of RCo₃Sn Compounds (R = Gd-Tm), J. Alloys Compd., 2002, 346(1-2), p 62-67
- 14. F. Canepa, S. Cirafici, M.L. Fornasini, P. Manfrinetti, F. Merlo, A. Palenzona, and M. Pani, Crystal Structure of R₃Co₈Sn₄ Compounds (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, *J. Alloys Compd.*, 2000, **297**(1-2), p 109-113
- R. Pottgen, The Stannides Re₃Co₆Sn₅ (Re = Y, Nd, Sm, Gd, Tb, Ho-Tm) with Dy₃Co₆Sn₅-Type Structure, J. Alloys Compd., 1995, **224**(1), p 14-17
- P. Villars, Ed., *Pearson's Handbook: Crystallographic Data* for Intermetallic Phases, ASM International, Materials Park, OH, 1997
- T.B. Massalski, P.R. Subramanian, H. Okamoto, and L. Kacprzak, Ed., *Binary Alloy Phase Diagrams*, Vol. 1, 2, and 3, ASM International, Materials Park, OH, 1990
- H. Okamoto, Co-Gd (Cobalt-Gadolinium), J. Phase Equilib., 1992, 13(6), p 673-674
- H. Okamoto, Co-Gd (Cobalt-Gadolinium), J. Phase Equilib., 1997, 18(3), p 314
- H. Okamoto, Co-Sn (Cobalt-Tin), J. Phase Equilib., 1993, 14(3), p 396-397
- H. Okamoto, Co-Sn (Cobalt-Tin), J. Phase Equilib. Diffus., 2006, 27(3), p 308
- A. Palenzona and S. Cirafici, The Gd-Sn (Gadolinium-Tin) System, J. Phase Equilib., 1991, 12(6), p 690-695

- H. Okamoto, Comment on Gd-Sn (Gadolinium-Tin), J. Phase Equilib., 1995, 16(1), p 100-101
- K.H.J. Buschow, Rare Earth-Cobalt Intermetallic Compounds, *Philips Res. Rep.*, 1971, 26, p 49-64
- W.Q. Ge, C.H. Wu, and Y.C. Chuang, Re-Investigation of the Gd-Co Binary System, Z. Metallkd., 1992, 83(5), p 300-303
- 26. Materials Data JADE Release 5, XRD Pattern Processing, Materials Data Inc., Livermore, CA
- W. Kraus and G. Nolze, POWDER CELL—A Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-ray Powder Patterns, *J. Appl. Crystallogr.*, 1996, **29**, p 301-303
- Y.H. Zhuang, Q.M. Zhu, J.Q. Li, K.W. Zhou, J.Q. Deng, and W. He, The Isothermal Section of the Gd-Dy-Co Ternary System at 800 K, *J. Alloys Compd.*, 2006, 422(1-2), p 214-217
- K.W. Zhou, Y.H. Zhuang, J.Q. Li, Q.M. Zhu, and J.Q. Deng, The 500°C Isothermal Section of the Gd-Tb-Co Ternary System, J. Alloys Compd., 2006, 422(1-2), p 145-148
- J. Stepien-Damm, O.I. Bodak, B.D. Belan, and E. Galdecka, The Pr-Fe-Sn Ternary System Phase Diagram and Crystal Structure of PrFe_{0.4}Sn₂, *J. Alloys Compd.*, 2000, 298(1), p 169-172
- Y. Mudryk, L. Romaka, Y. Stadnyk, O. Bodak, and D. Fruchart, X-Ray Investigation of the R-Fe-Sn Ternary Systems (R-Y, Gd), *J. Alloys Compd.*, 2004, 383(1-2), p 162-165
- V.V. Romaka, A. Tkachuk, and V. Davydov, Interaction of the Components in the Dy-Ag-Sn Ternary System at 870 K, *J. Alloys Compd.*, 2007, 439(1-2), p 128-131
- A. Szytula, E. Wawrzynska, and A. Zygmunt, Crystal Structure, Magnetic Properties of GdCo6X6 (X = Ge, Sn), TbCo6Ge6, J. Alloys Compd., 2004, 366(1-2), p L16-L18
- 34. P. Salamakha, O. Sologub, G. Bocelli, S. Otani, and T. Takabatake, Dy₁₁₇Co₅₇Sn₁₁₂, a New Structure Type of Ternary Intermetallic Stannides with a Giant Unit Cell, *J. Alloys Compd.*, 2001, **314**(1-2), p 177-180
- R. Pottgen, Dy₃Co₆Sn₅—A New Stannide with an Ordered La₃Al₁₁ Type-Structure, Z. Naturforsch. B, 1995, 50(2), p 175-179